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-Methods: Artificial Neural Networks-

« ANN can be trained by MC generated events

* A trained ANN provides multidimensional cuts for
data that are difficult to deduce in the usual manner
from 1-d or 2-d histogram plots.

* ANN has been used in HEP
» HEP Packages:

-JETNET

*SNNS

*MLP fit
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-ANN BASICS-

a;x+b,y+c; azx+byy+c,

a,X+b,y+c
2 2Y> 2

X

* Event sample characterized by two variables X and Y (left figure)
* A linear combination of cuts can separate “signal” from “"background” (right fig.)

[0 “Signal (x, y)" OUT
» Define “step function" S(ax +by +¢)= %1 W .g ( y)"
Signal (x, y)" IN

- Separate "signal” from "background” with the following function:

C(x,y) =5(S(a1x +byy +¢1) + S(azx +bpy +¢2) + S(azx +b3y +¢3) -2)
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-ANN BASICS-

Visualization of function C(x,y)

The diagram resembles a feed
forward neural network with
two input neurons, three
neurons in the first hidden

layer and one output neuron.

Threshold produces the desired
offset.

Constants a, b, are the

weights w;; (i and j are the

heuron indices).
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-ANN basics : Schematic-
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-ANN BASICS-

Output of t; each neuron in the first hidden layer :
;=53 wij )
|

Transfer function is the sigmoid function :

S(x) = #

l+e™ %
- For the standard backpropagation training procedure of neural
networks, the derivative of the neuron transfer functions must

exist in order to be able to minimize the network error (cost)
function E.

- Theorem 1 : Any continuous function of any number of variables on

a compact set can be approximated to any accuracy by a linear
combination of sigmoids

- Theorem 2 : Trained with desired output 1 for signal and O for
background the neural network function (output function 1))
approximates the Bayesian Probability of an event being a signal.
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-ANN BASICS-

: _ _ 2
Error function: E=3E; =5 (dj ;)" , where
P
. runs over the events of the training seft,

P
J ¢ Theindex of an output neuron,

- d,;: the desired output of neuron j in event p,
t,; + the network output.

All minimization methods use the computation of first order
derivatives:
Z

The description of backpr'opaga'rlon is that in each iteration

an, an,

JoE
Apwji(n+1)= —sa—P +alApwii(n) > where

W..
I :
- Aw(n+1) : the change in w; in iteration n+1,
- € . the distance to move along the gradient (‘learning

coefficient’)
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-ANN Probability (review)-

ANN analysis : Minimization of an Error (Cost) Function
En = % > (F(x;.w) - ‘ri)Z, w =weights, f(x,w) = ANN output,x = feature vector
N

t =desired ANN output (1 Signal & O background)

_Ns 1 2 NB 1 2
=9 - -1 0]
En Nng(f )T+ Z(f )
: Ns 1 2 Np 1 )
lim  Ey=  lim f-1)"+ =S (f-0
N'NSTNBW N NNslNgaoo NNSZ( ) NNBZ( )%)
but lim N—SZP(S)& lim N—:P(B)
N,Ns - N N.Ng ~ 0 N
and lim - (f~s)? = [(f ~$)2P(x/S)dx ...
Ns—»OONS
...... f=P(5/x)

The ANN output is the Bayes a posteriori probability & in the proof
no special assumption has been made on the a priori P(S) and P(B)
probabilities (absolute normalization).... TRUE BUT THEIR VALUES
DO MATTER ... (They should be what nature gave us)



-ANN probability (review)-

Bayesian a posteriori probability :
P(x/S)*P(S)
(P(S)*P(x/S) +P(B)*P(x/B)
P(S)=apriori signal probabilty P(x/S) = Signal probabilty density function
P(B)=apriori background probabilty  P(x/B)=Background probabilty density function

P(S/x) =

ANN output : P(S/x)

ANN training examples : P(x/S) & P(x/B)

ANN number of Signal Training Examples P(S)
ANN number of Background Training Examples P(B)

The MLP (ann) analysis A(X) = P(x/S) &= P(B)(c12 —¢11)
and the Maximum Likelihood P(x/B) P(S)(c21 —¢22)
Method ( Bayes Classifier ) if c11=cp2 =0&c1p =¢c21 O

are equivalent. P(x/S) S P(B)

A(X)>E = = P(x/S) *P(S) >P(x/B) *P(B) =
(cqq €25 = cost for making the P(x/B) P(S)
correct decision & o P(x/S) *P(S) [ PC/B) *P(B) _ pig/uy > P(B/x)
Cq2 C»1 = cost for making the P(x) P(x)

wrong decision ) = P(S/x) >(1-P(S/x)) = P(S/x) >0.5




ANN
output

-ANN Probability cont. -
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P(S/x)=0.1

N
N

- Worse hypothetical case 1:

One variable characterizing the
populations, which is identical for
S and B, therefore :

P(S)=0.14& P(B)=-0.9

« If we train with equal numbers
for signal and background the
ANN  will  wrongly compute
P(S/x)=0.5

 If we train with the correct
ratio for signal and background
the ANN will correctly compute
P(S/x)=0.1, which is exactly
what  Bayes a  posteriori
probability would give also.
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ANN
output

-ANN Probability cont.-

#hH dimkitaadions for signol ard bachgreasd wih PLS]=5 1 FB)=0.0
[1]
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Lean —OBEIE—T1
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P(s/x) =1

N
N

- Best hypothetical case :

One variable characterizing the
populations, which is completely
separated (different) for S and B.

P(S)=0.1 & P(B)=0.9

 If we train with equal numbers for
signal and background the ANN will
compute P(S/x)=1.

e Tf we train with the correct ratio
for signal and background the ANN

will again compute P(S/x)=1.

* In this case it does not matter
if we use the correct a priori
probabilities or not.
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-Quantities that characterize an ANN-

Network output (selection) function for “"background “and “signal” events

A
o
o
&
g
>
Q.
0 f(x) = P(S/x) 1
£fici _Sc
S = Total # Signal events erticiency =4~
B = Total # Background events purity = Sc
Sc¢ +Bc¢

S. = Signal events above Cut

B. = Background events above Cut contamination :B_C
B
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-Goals of the ANN analysis involving
spectrometer information -

* Use Artificial Neural Network techniques to identify
and classify Neutrino Interactions on “event-by-event”
basis using topological and physical characteristics of
neutrino events derived from both experimental data as
well as MC generated interactions:

CC v, v, Vv,
- NC

* Requirement: MC should be capable of describing very
well the neutrino data.

N. Saoulidou and G. Tzanakos 14



-Neutrino event Classification: Method-

- Method :

- Construct two sequential Neural Networks (ANN1 & ANNZ2)
that will be applied in the whole data set :

All v's

. .
a) The first will distinguish| v, CC |from |v, & v. CC + NC

l l

b) The second will distinguish | NC | from v, CC & v, CC

N. Saoulidou and G. Tzanakos 15



-Training Set & Input Variables-

For every period we construct a separate set of (2) ANN's since every
period has different target -configuration and thus different event
characteristics.

*  For every period we use 5000 MC events as a training set.

INPUT VARIABLES
HITS Total number of DC hits
(Total number of MID hits in the Central tubes)
EMCAL  Total energy deposition
Number of clusters
Average Cluster energy
Mean value of the Clusters angle from the vertex with respect to the z - axis
Standard deviation of the Clusters angle
Mean Absolute deviation of the of the Clusters angle
Higher Moments of the Clusters angle : a) Skewness b) Curtosis
(Percentage of tracks with E/P < 0.3 (Muons))
TRACKS  Number of final tracks
Number of DC tracks
(Number of tracks that have more than 3 hits in the MID system (Muons))
OTHER  Total Pulse Height in the SF system

*** Comparing the MC distributions of these variables with REAL data we
found that with the 0.001 criterion they are considered compatible

according to the Kolmogdrapufidgyand G. Tzanakos 16



-Output of ANN1 (v,CC - All the rest)-

E . CC All the = &= F o,
o \ r‘es{< L F
— cut | | b

The performance of that network is satisfactory.

With a cut @ 0.5 in the network output function we select “signal”
events and on the same time "background” events with :

All the rest efficiency 96 % - purity 88 %
v, CC n. s@fficieneyrdaole - purity 96 % |5




-ANN1 (v,CC - All the rest) performance on
MC & Real Data-
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The performance of the output function of ANN1 in MC
events and in the experimental data set is very similar.

That indicates that the results from ANN1 implementation

in the experimental data set are quite reliable.
N. Saoulidou and G. Tzanakos 18



-Output of ANN2 (NC - v, CC )-

AMH dibribubions for sigeal{ BC] ond backgrourd (rueC] eanks Efficiency pority ond contborminobion for the HC — RoeCC
:.
000 Ertr 14 |- W Eficassy

E 1557
an o] B
B AL 02294 - % Conlominobon
000 UOFLW DL
- o Lm D000 1.3 Puriy
: LD R 0.0 JEaE+06
HEKEl - =
N i . .
19 D - -
-

v, CC {

ALK

-
- o [ ]
spoa |- ] ] L .
[ | o4
acon [ “_i -
.'-r:rr-:— ) v L—'—'Ll 3:"__
l— B T S ]

This network shows a quite good behavior and by choosing a cut @
0.5 we select signal (NC ) and at the same time background
events (v, CC) with:

NC efficiency 68 % - purity 80 %
, CC N. seffiiciency B6:k6 - purity 76 % |9

Vv




-ANN2 (NC - v, CC) performance on MC &
experimental Data-

] :— -J J’|“ -l'-"-l-'- (EEL) MG (ELaCE) _’/MC
oo | S [r 1 ﬁ’” [ DATA
| I T B «—1—T (scaled)
“-ci; - u“"rlj e '11: . '.{,'- - :“1; I

The performance of the output function of ANNZ2 in MC
and in the Experimental data set is very similar,

That permits us to consider the results of ANN2 quite
reliable.
N. Saoulidou and G. Tzanakos 20



-Expected number of neutrino interactions per
run period & per emulsion module-

Nexp. = P:Jl!l' [POT (Rt [£
G(ov\?ic‘lj'h?r? r'felmzl;‘l' Expected number'- 964 + 235
Observed number 909
?‘ Difference 55 + 235

Ratios (%) v, CC v, CC v, CC NC
Expected 40.9+4.2 32.9+4.0 3.2+1.0 22.9+0.1
ANN ‘expected’ 32.3+2.4 36.3t3.9 ------ 31.4:2.0
ANN observed 34.3:1.6 36.0t1.6 @ ------ 29.7+1.5
Difference 2.0 £2.9 0.3 :4.0 1.7 2.5
Numbers v, CC v, CC v, CC NC
Expected 395 +118 317 272 3111 222 +37
ANN ‘expected’ 312 + 92 350 £79 = ------ 303 + 75
ANN observed 312 + 15 327 £15 ------ 270 + 15
Difference 0+ 93 23 + 80 33 + 76




-Phase I & IT -

* Muon CC events , current definition : >> 3 hits in the MID prop. tubes

Muon CC events, ANN training : > 3 hits in the MID

From the 162 muon CC events from Gina :
158 are characterized as muon CC by the ANN also.
98 % agreement

- The ANN has characterized as muon CC an additional number of 23 events
out of which:

5 are "clear " muons (and should be added to the list)
18 have (or had) reconstructed tracks with hits in the MID
that fail the standard criteria.

* From Bruce's analysis ~ 19 events out of the 118 ANN nue CC events look
like NC events

From the comparison between the ANN characterization and Bruce's
analysis, as far as the nue CC events are concerned, the agreement is quite
h'gh and Of the order Of 85 %. Saoulidou and G. Tzanakos 22



-ANN for v. CC - NC scattering-

Goal : To separate v, CC interactions from hadron
scattering from NC interactions with the use of ANNs

Input Variables :

- Daughter Momentum

- Decay Length

- Parent angle

- Daughter angle

- A (between the parent and all the other primary tracks)

Training Set
- 20000 v, CC interactions
- 20000 hadron scattering NC interactions

N. Saoulidou and G. Tzanakos 23



-MC Distributions of v.CC &
hadron scattering events-

Daughter P Parent Angle
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-ANN v, CC - hadron scattering cont. -

Output ANN function (in log scale) (momentum smeared by 30%)

Efficiency, Purity and contamination
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The performance of the ANN is quite satisfactory as far as its discriminating

power is concerned. With the cut@ 0.5 we

select tau decays with

~99% efficiency & ~99% purity




-ANN v, CC - hadron scattering results
on the 37 recognized kinks-

AH slnielie e Hnlafwr 1=10-10/

Data Ap/p=30%

P & = R & &
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EVENTS THAT EXCEED THE 0.5 CUT IN THE ANN OUTPUT FUNCTION
RUN EVENT P, 8, P+ Ly 8, A Probabilities
3263 25102 1.900 0.1300 0.247 1890.1 0.1772 0.176 0.136***
3024 30175 2.900 0.0936 0.271 4504.8 0.0279 1.027 0.971
3039 1910 4.600 0.0895 0.412 276.5 0.0653 2.684 1.000
3333 17665 21.400 0.0130 0.278 564.6 0.0154 2.806 1.000
3193 1361 20.000 0.0187 0.374 1863.6 0.0838 2.341 1.000 CHARM

Considering as "Signal" events (v, CC) the ones with probabilities P > 0.5 we
can compute the background to these events by adding 1-P. Therefore :

Bkg = 0.029




- Characteristics of Selected ANN events-
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- Characteristics of Selected ANN events cont. -
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-MC Distributions of v. CC &
Charm events-

Daughter Momentum Parent angle
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o

Charm one prong
kink decays (red)

v. CC (black)
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-ANN v, CC - charm one prong kink decay-

Output ANN function (in log scale) (momentum smeared by 30%)
Efficiency, Purity and contamination
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- The classification is poor (as expected), since all variables
characterizing these two populations are almost identical.

- However the event probabilities obtained from this ANN analysis can
be used to compute the background from this second source (charm one
prong kink decays where the lepton from the primary is missed)



-ANN v, CC - charm one prong kink decay
background estimation-

'I-l'_:I
s
ul-ril

AP/P=30%

'I!TI_I_.1”'

RUN EVENT P, 0, P; L, 0, Ag Prob.

3024 30175 2.900 0.0936 0.271 4504.8 0.0279 1.027 0.710

3039 1910 4.600 0.0895 0.412 276.5 0.0653 2.684 0.990

3333 17665 21.400 0.0130 0.278 564.6 0.0154 2.806 0.990

3193 1361 20.000 0.0187 0.374 1863.6 0.0838 2.341 0.990 CHARM

We compute the background to these events by adding 1-P. Therefore :
Bkg = 0.310




-Tau neutrino CC and Charm interactions-

v, CC 1-prong observed : N.=3.00 Bkg=0.34 individual event probabilities
(v, CC 1-prong observed : N.= 4.00 Bkg= 0.34 P cut)

Poisson Probability of the Background fluctuating to the Signal Level :
2.3x10°(4x10%
v, CC 1-prong expected : 5.3 +1.6

v. CC candidates observed : 6
v, CC expected 1 6.3+1.8

Total Charm events observed : 8
Charm events observed : 6.9 +1.8

- Charged Charm events observed : 4
- Charged Charm events observed : 3.0 +1.2

* Charged Charm 1-prong events observed : 3
» Charged Charm 1-prong events observed  :1.3 +0.5

N. Saoulidou and G. Tzanakos 32




Vertex predictions & Event location
status

+ We have send ~ 20 vertex predictions for
“clean” events.

* We have processed the 7 new m-files send
to us by Nonaka and located 4 events.

N. Saoulidou and G. Tzanakos 33



-Summary -

* The ANN analysis for neutrino event characterization
is in agreement with what expected and in good
agreement with the other independent methods (from
Gina & Bruce).

* The ANN analysis for kink characterization and
background estimation is also in good agreement with
all the other independent methods (from Byron and
Emily).

- We would also like to use this method for the trident

events as soon as the production of the MC files is
complete.

* We have completed all new vertex predictions related
with Phase IT and processed (for event location) the 7

new m-files.
N. Saoulidou and G. Tzanakos 34



